Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1122078, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37032909

RESUMO

Cyanobacteria have raised great interest in biotechnology, e.g., for the sustainable production of molecular hydrogen (H2) using electrons from water oxidation. However, this is hampered by various constraints. For example, H2-producing enzymes compete with primary metabolism for electrons and are usually inhibited by molecular oxygen (O2). In addition, there are a number of other constraints, some of which are unknown, requiring unbiased screening and systematic engineering approaches to improve the H2 yield. Here, we introduced the regulatory [NiFe]-hydrogenase (RH) of Cupriavidus necator (formerly Ralstonia eutropha) H16 into the cyanobacterial model strain Synechocystis sp. PCC 6803. In its natural host, the RH serves as a molecular H2 sensor initiating a signal cascade to express hydrogenase-related genes when no additional energy source other than H2 is available. Unlike most hydrogenases, the C. necator enzymes are O2-tolerant, allowing their efficient utilization in an oxygenic phototroph. Similar to C. necator, the RH produced in Synechocystis showed distinct H2 oxidation activity, confirming that it can be properly matured and assembled under photoautotrophic, i.e., oxygen-evolving conditions. Although the functional H2-sensing cascade has not yet been established in Synechocystis yet, we utilized the associated two-component system consisting of a histidine kinase and a response regulator to drive and modulate the expression of a superfolder gfp gene in Escherichia coli. This demonstrates that all components of the H2-dependent signal cascade can be functionally implemented in heterologous hosts. Thus, this work provides the basis for the development of an intrinsic H2 biosensor within a cyanobacterial cell that could be used to probe the effects of random mutagenesis and systematically identify promising genetic configurations to enable continuous and high-yield production of H2 via oxygenic photosynthesis.

2.
Curr Opin Biotechnol ; 80: 102892, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36669448

RESUMO

Cyanobacteria as phototrophic microorganisms bear great potential to produce chemicals from sustainable resources such as light and CO2. Most studies focus on either strain engineering or tackling metabolic constraints. Recently gained knowledge on internal electron and carbon fluxes and their regulation provides new opportunities to efficiently channel cellular resources toward product formation. Concomitantly, novel photobioreactor concepts are developed to ensure sufficient light supply. This review summarizes the newest developments in the field of cyanobacterial engineering to finally establish photosynthesis-based production processes. A holistic approach tackling genetic, metabolic, and biochemical engineering in parallel is considered essential to turn their application into an ecoefficient and economically feasible option for a future green bioeconomy.


Assuntos
Cianobactérias , Fotossíntese , Fotossíntese/genética , Cianobactérias/genética , Cianobactérias/metabolismo , Ciclo do Carbono , Engenharia Metabólica
3.
Adv Biochem Eng Biotechnol ; 183: 65-103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36029350

RESUMO

Cyanobacteria are the only prokaryotes performing oxygenic photosynthesis, a solar-driven process which allows them to obtain electrons from water to reduce and finally assimilate carbon dioxide. Consequently, they are in the spotlight of biotechnology as photoautotrophic cell factories to generate a large variety of chemicals and biofuels in a sustainable way. Recent progress in synthetic biology has enlarged the molecular toolset to genetically engineer the metabolism of cyanobacteria, mainly targeting common model strains, such as Synechocystis sp. PCC 6803, Synechococcus elongatus PCC 7942, Synechococcus sp. PCC 7002, or Anabaena sp. PCC 7120. Nevertheless, the accessibility and flexibility of engineering cyanobacteria is still somewhat limited and less predictable compared to other biotechnologically employed microorganisms.This chapter gives a broad overview of currently available methods for the genetic modification of cyanobacterial model strains as well as more recently discovered and promising species, such as Synechococcus elongatus PCC 11801. It comprises approaches based on homologous recombination, replicative broad-host-range or strain-specific plasmids, CRISPR/Cas, as well as markerless selection. Furthermore, common and newly introduced molecular tools for gene expression regulation are presented, comprising promoters, regulatory RNAs, genetic insulators like transcription terminators, ribosome binding sites, CRISPR interference, and the utilization of heterologous RNA polymerases. Additionally, potential DNA assembly strategies, like modular cloning, are described. Finally, considerations about post-translational control via protein degradation tags and heterologous proteases, as well as small proteins working as enzyme effectors are briefly discussed.


Assuntos
Synechococcus , Synechocystis , Synechococcus/genética , Synechococcus/metabolismo , Fotossíntese , Synechocystis/genética , Synechocystis/metabolismo , Biotecnologia
4.
Front Microbiol ; 13: 1042437, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36425037

RESUMO

Cyanobacteria are highly promising microorganisms in forthcoming biotechnologies. Besides the systematic development of molecular tools for genetic engineering, the design of chassis strains and novel reactor concepts are in focus. The latter includes capillary biofilm reactors (CBR), which offer a high surface area-to-volume ratio and very high cell densities. In this context, Tolypothrix sp. PCC 7712 was found to be highly suited for this reactor system due to maximal surface coverage, extraordinarily strong biofilm attachment, and high biomass formation. Here, we provide the genome sequence of Tolypothrix sp. PCC 7712 to potentially allow targeted strain engineering. Surprisingly, it was almost identical to an available incomplete genome draft of Tolypothrix sp. PCC 7601. Thus, we completely sequenced this strain as well and compared it in detail to strain PCC 7712. Comparative genome analysis revealed 257 and 80 unique protein-coding sequences for strains PCC 7601 and PCC 7712, respectively. Clustering genomes based on average nucleotide identity (ANI) and 16S rRNA homology showed 99.98% similarity and only minor distance, respectively, between the two strains in contrast to 21 other cyanobacterial genomes. Despite these high similarities, both strains differ in the ability to fix atmospheric nitrogen and show specific sequence variations, which are discussed in the paper.

5.
RNA Biol ; 19(1): 811-818, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35678613

RESUMO

As the only oxygenic phototrophs among prokaryotes, cyanobacteria employ intricate mechanisms to regulate common metabolic pathways. These mechanisms include small protein inhibitors exerting their function by protein-protein interaction with key metabolic enzymes and regulatory small RNAs (sRNAs). Here we show that the sRNA NsiR4, which is highly expressed under nitrogen limiting conditions, interacts with the mRNA of the recently described small protein PirA in the model strain Synechocystis sp. PCC 6803. In particular, NsiR4 targets the pirA 5'UTR close to the ribosome binding site. Heterologous reporter assays confirmed that this interaction interferes with pirA translation. PirA negatively impacts arginine synthesis under ammonium excess by competing with the central carbon/nitrogen regulator PII that binds to and thereby activates the key enzyme of arginine synthesis, N-acetyl-L-glutamate-kinase (NAGK). Consistently, ectopic nsiR4 expression in Synechocystis resulted in lowered PirA accumulation in response to ammonium upshifts, which also affected intracellular arginine pools. As NsiR4 and PirA are inversely regulated by the global nitrogen transcriptional regulator NtcA, this regulatory axis enables fine tuning of arginine synthesis and conveys additional metabolic flexibility under highly fluctuating nitrogen regimes. Pairs of small protein inhibitors and of sRNAs that control the abundance of these enzyme effectors at the post-transcriptional level appear as fundamental building blocks in the regulation of primary metabolism in cyanobacteria.


Assuntos
Compostos de Amônio , Synechocystis , Compostos de Amônio/metabolismo , Arginina/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Nitrogênio , Synechocystis/genética
6.
ACS Synth Biol ; 11(5): 1758-1771, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35405070

RESUMO

Cyanobacteria have raised great interest in biotechnology due to their potential for a sustainable, photosynthesis-driven production of fuels and value-added chemicals. This has led to a concomitant development of molecular tools to engineer the metabolism of those organisms. In this regard, however, even cyanobacterial model strains lag behind compared to their heterotrophic counterparts. For instance, replicative shuttle vectors that allow gene transfer independent of recombination into host DNA are still scarce. Here, we introduce the pSOMA shuttle vector series comprising 10 synthetic plasmids for comprehensive genetic engineering of Synechocystis sp. PCC 6803. The series is based on the small endogenous plasmids pCA2.4 and pCB2.4, each combined with a replicon from Escherichia coli, different selection markers as well as features facilitating molecular cloning and the insulated introduction of gene expression cassettes. We made use of genes encoding green fluorescent protein (GFP) and a Baeyer-Villiger monooxygenase (BVMO) to demonstrate functional gene expression from the pSOMA plasmids in vivo. Moreover, we demonstrate the expression of distinct heterologous genes from individual plasmids maintained in the same strain and thereby confirmed compatibility between the two pSOMA subseries as well as with derivatives of the broad-host-range plasmid RSF1010. We also show that gene transfer into the filamentous model strain Anabaena sp. PCC 7120 is generally possible, which is encouraging to further explore the range of cyanobacterial host species that could be engineered via pSOMA plasmids. Altogether, the pSOMA shuttle vector series displays an attractive alternative to existing plasmid series and thus meets the current demand for the introduction of complex genetic setups and to perform extensive metabolic engineering of cyanobacteria.


Assuntos
Anabaena , Synechocystis , Anabaena/genética , Anabaena/metabolismo , Escherichia coli/genética , Engenharia Genética , Vetores Genéticos/genética , Engenharia Metabólica , Plasmídeos/genética , Synechocystis/genética
7.
New Phytol ; 235(2): 432-445, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35377491

RESUMO

Oxygenic photosynthesis evolved in cyanobacteria, primary producers of striking ecological importance. Like plants, cyanobacteria use the Calvin-Benson-Bassham cycle for CO2 fixation, fuelled by ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). In a competitive reaction this enzyme also fixes O2 which makes it rather ineffective. To mitigate this problem, cyanobacteria evolved a CO2 concentrating mechanism (CCM) to pool CO2 in the vicinity of RuBisCO. However, the regulation of these carbon (C) assimilatory systems is understood only partially. Using the model Synechocystis sp. PCC 6803 we characterized an essential LysR-type transcriptional regulator encoded by gene sll0998. Transcript profiling of a knockdown mutant revealed diminished expression of several genes involved in C acquisition, including rbcLXS, sbtA and ccmKL encoding RuBisCO and parts of the CCM, respectively. We demonstrate that the Sll0998 protein binds the rbcL promoter and acts as a RuBisCO regulator (RbcR). We propose ATTA(G/A)-N5 -(C/T)TAAT as the binding motif consensus. Our data validate RbcR as a regulator of inorganic C assimilation and define the regulon controlled by it. Biological CO2 fixation can sustain efforts to reduce its atmospheric concentrations and is fundamental for the light-driven production of chemicals directly from CO2 . Information about the involved regulatory and physiological processes is crucial to engineer cyanobacterial cell factories.


Assuntos
Ribulose-Bifosfato Carboxilase , Synechocystis , Dióxido de Carbono/metabolismo , Oxigenases/metabolismo , Fotossíntese/genética , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Ribulosefosfatos , Synechocystis/metabolismo
8.
Biol Direct ; 16(1): 26, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34906211

RESUMO

Microorganisms evolved specific acclimation strategies to thrive in environments of high or fluctuating salinities. Here, salt acclimation in the model cyanobacterium Synechocystis sp. PCC 6803 was analyzed by integrating transcriptomic, proteomic and metabolomic data. A dynamic reorganization of the transcriptome occurred during the first hours after salt shock, e.g. involving the upregulation of genes to activate compatible solute biochemistry balancing osmotic pressure. The massive accumulation of glucosylglycerol then had a measurable impact on the overall carbon and nitrogen metabolism. In addition, we observed the coordinated induction of putative regulatory RNAs and of several proteins known for their involvement in other stress responses. Overall, salt-induced changes in the proteome and transcriptome showed good correlations, especially among the stably up-regulated proteins and their transcripts. We define an extended salt stimulon comprising proteins directly or indirectly related to compatible solute metabolism, ion and water movements, and a distinct set of regulatory RNAs involved in post-transcriptional regulation. Our comprehensive data set provides the basis for engineering cyanobacterial salt tolerance and to further understand its regulation.


Assuntos
Proteômica , Synechocystis , Proteínas de Bactérias/genética , Pressão Osmótica , Estresse Salino
9.
Metab Eng ; 68: 199-209, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34673236

RESUMO

Molecular hydrogen (H2) is considered as an ideal energy carrier to replace fossil fuels in future. Biotechnological H2 production driven by oxygenic photosynthesis appears highly promising, as biocatalyst and H2 syntheses rely mainly on light, water, and CO2 and not on rare metals. This biological process requires coupling of the photosynthetic water oxidizing apparatus to a H2-producing hydrogenase. However, this strategy is impeded by the simultaneous release of oxygen (O2) which is a strong inhibitor of most hydrogenases. Here, we addressed this challenge, by the introduction of an O2-tolerant hydrogenase into phototrophic bacteria, namely the cyanobacterial model strain Synechocystis sp. PCC 6803. To this end, the gene cluster encoding the soluble, O2-tolerant, and NAD(H)-dependent hydrogenase from Ralstonia eutropha (ReSH) was functionally transferred to a Synechocystis strain featuring a knockout of the native O2 sensitive hydrogenase. Intriguingly, photosynthetically active cells produced the O2 tolerant ReSH, and activity was confirmed in vitro and in vivo. Further, ReSH enabled the constructed strain Syn_ReSH+ to utilize H2 as sole electron source to fix CO2. Syn_ReSH+ also was able to produce H2 under dark fermentative conditions as well as in presence of light, under conditions fostering intracellular NADH excess. These findings highlight a high level of interconnection between ReSH and cyanobacterial redox metabolism. This study lays a foundation for further engineering, e.g., of electron transfer to ReSH via NADPH or ferredoxin, to finally enable photosynthesis-driven H2 production.


Assuntos
Hidrogenase , Synechocystis , Hidrogênio , Hidrogenase/genética , Oxigênio , Fotossíntese , Synechocystis/genética , Synechocystis/metabolismo
10.
mBio ; 12(2)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758091

RESUMO

Among prokaryotes, cyanobacteria have an exclusive position as they perform oxygenic photosynthesis. Cyanobacteria substantially differ from other bacteria in further aspects, e.g., they evolved a plethora of unique regulatory mechanisms to control primary metabolism. This is exemplified by the regulation of glutamine synthetase (GS) via small proteins termed inactivating factors (IFs). Here, we reveal another small protein, encoded by the ssr0692 gene in the model strain Synechocystis sp. PCC 6803, that regulates flux into the ornithine-ammonia cycle (OAC), the key hub of cyanobacterial nitrogen stockpiling and remobilization. This regulation is achieved by the interaction with the central carbon/nitrogen control protein PII, which commonly controls entry into the OAC by activating the key enzyme of arginine synthesis, N-acetyl-l-glutamate kinase (NAGK). In particular, the Ssr0692 protein competes with NAGK for PII binding and thereby prevents NAGK activation, which in turn lowers arginine synthesis. Accordingly, we termed it PII-interacting regulator of arginine synthesis (PirA). Similar to the GS IFs, PirA accumulates in response to ammonium upshift due to relief from repression by the global nitrogen control transcription factor NtcA. Consistent with this, the deletion of pirA affects the balance of metabolite pools of the OAC in response to ammonium shocks. Moreover, the PirA-PII interaction requires ADP and is prevented by PII mutations affecting the T-loop conformation, the major protein interaction surface of this signal processing protein. Thus, we propose that PirA is an integrator determining flux into N storage compounds not only depending on the N availability but also the energy state of the cell.IMPORTANCE Cyanobacteria contribute a significant portion to the annual oxygen yield and play important roles in biogeochemical cycles, e.g., as major primary producers. Due to their photosynthetic lifestyle, cyanobacteria also arouse interest as hosts for the sustainable production of fuel components and high-value chemicals. However, their broad application as microbial cell factories is hampered by limited knowledge about the regulation of metabolic fluxes in these organisms. Our research identified a novel regulatory protein that controls nitrogen flux, in particular arginine synthesis. Besides its role as a proteinogenic amino acid, arginine is a precursor for the cyanobacterial storage compound cyanophycin, which is of potential interest to biotechnology. Therefore, the obtained results will not only enhance our understanding of flux control in these organisms but also help to provide a scientific basis for targeted metabolic engineering and, hence, the design of photosynthesis-driven biotechnological applications.


Assuntos
Amônia/metabolismo , Ornitina/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Arginina/biossíntese , Arginina/metabolismo , Nitrogênio/metabolismo , Proteínas PII Reguladoras de Nitrogênio/genética , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Transdução de Sinais
11.
Metab Eng Commun ; 12: e00155, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33511031

RESUMO

Cyanobacteria play an important role in photobiotechnology. Yet, one of their key central metabolic pathways, the tricarboxylic acid (TCA) cycle, has a unique architecture compared to most heterotrophs and still remains largely unexploited. The conversion of 2-oxoglutarate to succinate via succinyl-CoA is absent but is by-passed by several other reactions. Overall, fluxes under photoautotrophic growth conditions through the TCA cycle are low, which has implications for the production of chemicals. In this study, we investigate the capacity of the TCA cycle of Synechocystis sp PCC 6803 for the production of trans-4-hydroxy-L-proline (Hyp), a valuable chiral building block for the pharmaceutical and cosmetic industries. For the first time, photoautotrophic Hyp production was achieved in a cyanobacterium expressing the gene for the L-proline-4-hydroxylase (P4H) from Dactylosporangium sp. strain RH1. Interestingly, while elevated intracellular Hyp concentrations could be detected in the recombinant Synechocystis strains under all tested conditions, detectable Hyp secretion into the medium was only observed when the pH of the medium exceeded 9.5 and mostly in the late phases of the cultivation. We compared the rates obtained for autotrophic Hyp production with published sugar-based production rates in E. coli. The land-use efficiency (space-time yield) of the phototrophic process is already in the same order of magnitude as the heterotrophic process considering sugar farming as well. But, the remarkable plasticity of the cyanobacterial TCA cycle promises the potential for a 23-55 fold increase in space-time yield when using Synechocystis. Altogether, these findings contribute to a better understanding of bioproduction from the TCA cycle in photoautotrophs and broaden the spectrum of chemicals produced in metabolically engineered cyanobacteria.

12.
Life (Basel) ; 10(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271798

RESUMO

Over the past few decades, bioengineered cyanobacteria have become a major focus of research for the production of energy carriers and high value chemical compounds. Besides improvements in cultivation routines and reactor technology, the integral understanding of the regulation of metabolic fluxes is the key to designing production strains that are able to compete with established industrial processes. In cyanobacteria, many enzymes and metabolic pathways are regulated differently compared to other bacteria. For instance, while glutamine synthetase in proteobacteria is mainly regulated by covalent enzyme modifications, the same enzyme in cyanobacteria is controlled by the interaction with unique small proteins. Other prominent examples, such as the small protein CP12 which controls the Calvin-Benson cycle, indicate that the regulation of enzymes and/or pathways via the attachment of small proteins might be a widespread mechanism in cyanobacteria. Accordingly, this review highlights the diverse role of small proteins in the control of cyanobacterial metabolism, focusing on well-studied examples as well as those most recently described. Moreover, it will discuss their potential to implement metabolic engineering strategies in order to make cyanobacteria more definable for biotechnological applications.

13.
Front Microbiol ; 10: 2139, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572343

RESUMO

Cyanobacteria are prokaryotes that can assimilate inorganic carbon via oxygenic photosynthesis, which results in the formation of organic compounds essentially from CO2, water, and light. Increasing concerns regarding the increase in atmospheric CO2 due to fossil energy usage fueled the idea of a photosynthesis-driven and CO2-neutral, i.e., cyanobacteria-based biotechnology. The ability of various cyanobacteria to tolerate high and/or fluctuating salinities attenuates the requirement of freshwater for their cultivation, which makes these organisms even more interesting regarding a sustainable utilization of natural resources. However, those applications require a detailed knowledge of the processes involved in salt acclimation. Here, we review the current state of our knowledge on the regulation of compatible solute accumulation in cyanobacteria. The model organism Synechocystis sp. PCC 6803 responds to increasing salinities mainly by the accumulation of glucosylglycerol (GG) and sucrose. After exposure toward increased salt concentrations, the accumulation of the main compatible solute GG is achieved by de novo synthesis. The key target of regulation is the enzyme GG-phosphate synthase (GgpS) and involves transcriptional, posttranscriptional, and biochemical mechanisms. Recently, the GG-degrading enzyme GG hydrolase A (GghA) was identified, which is particularly important for GG degradation during exposure to decreasing salinities. The inversely ion-regulated activities of GgpS and GghA could represent the main model for effectively tuning GG steady state levels according to external salinities. Similar to GG, the intracellular amount of sucrose is also salt-regulated and seems to be determined by the balance of sucrose synthesis via sucrose-phosphate synthase (Sps) and its degradation via invertase (Inv). In addition to their role as stress protectants, both compatible solutes also represent promising targets for biotechnology. Hence, the increasing knowledge on the regulation of compatible solute accumulation not only improves our understanding of the stress physiology of cyanobacteria but will also support their future biotechnological applications.

14.
Front Microbiol ; 10: 1233, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231331

RESUMO

DNA methylation plays a crucial role for gene regulation among eukaryotes, but its regulatory function is less documented in bacteria. In the cyanobacterium Synechocystis sp. PCC 6803 five DNA methyltransferases have been identified. Among them, M.Ssp6803II is responsible for the specific methylation of the first cytosine in the frequently occurring motif GGCC, leading to N4-methylcytosine (GGm4CC). The mutation of the corresponding gene sll0729 led to lowered chlorophyll/phycocyanin ratio and slower growth. Transcriptomics only showed altered expression of sll0470 and sll1526, two genes encoding hypothetical proteins. Moreover, prolonged cultivation revealed instability of the initially obtained phenotype. Colonies with normal pigmentation and wild-type-like growth regularly appeared on agar plates. These colonies represent suppressor mutants, because the sll0729 gene was still completely inactivated and the GGCC sites remained unmethylated. The suppressor strains showed smaller cell size, lowered DNA content per cell, and decreased tolerance against UV compared to wild type. Promoter assays revealed that the transcription of the sll0470 gene was still stimulated in the suppressor clones. Proteomics identified decreased levels of DNA topoisomerase 4 subunit A in suppressor cells. Collectively, these results indicate that GGm4CC methylation is involved in the regulation of gene expression, in the fine-tuning of DNA replication, and DNA repair mechanisms.

15.
Life (Basel) ; 8(4)2018 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-30373240

RESUMO

Glutamine synthetase (GS) features prominently in bacterial nitrogen assimilation as it catalyzes the entry of bioavailable nitrogen in form of ammonium into cellular metabolism. The classic example, the comprehensively characterized GS of enterobacteria, is subject to exquisite regulation at multiple levels, among them gene expression regulation to control GS abundance, as well as feedback inhibition and covalent modifications to control enzyme activity. Intriguingly, the GS of the ecologically important clade of cyanobacteria features fundamentally different regulatory systems to those of most prokaryotes. These include the interaction with small proteins, the so-called inactivating factors (IFs) that inhibit GS linearly with their abundance. In addition to this protein interaction-based regulation of GS activity, cyanobacteria use alternative elements to control the synthesis of GS and IFs at the transcriptional level. Moreover, cyanobacteria evolved unique RNA-based regulatory mechanisms such as glutamine riboswitches to tightly tune IF abundance. In this review, we aim to outline the current knowledge on the distinctive features of the cyanobacterial GS encompassing the overall control of its activity, sensing the nitrogen status, transcriptional and post-transcriptional regulation, as well as strain-specific differences.

16.
Biotechnol Biofuels ; 11: 218, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30127850

RESUMO

BACKGROUND: Cyanobacteria have shown promising potential for the production of various biofuels and chemical feedstocks. Synechococcus elongatus UTEX 2973 is a fast-growing strain with pronounced tolerance to high temperatures and illumination. Hence, this strain appears to be ideal for the development of photosynthetic biotechnology. However, molecular insights on how this strain can rapidly accumulate biomass and carbohydrates under high-light and high-temperature conditions are lacking. RESULTS: Differential RNA-Sequencing (dRNA-Seq) enabled the genome-wide identification of 4808 transcription start sites (TSSs) in S. elongatus UTEX 2973 using a background reduction algorithm. High light promoted the transcription of genes associated with central metabolic pathways, whereas the highly induced small RNA (sRNA) PsrR1 likely contributed to the repression of phycobilisome genes and the accelerated glycogen accumulation rates measured under this condition. Darkness caused transcriptome remodeling with a decline in the expression of genes for carbon fixation and other major metabolic pathways and an increase in the expression of genes for glycogen catabolism and Calvin cycle inhibitor CP12. Two of the identified TSSs drive the transcription of highly abundant sRNAs in darkness. One of them is widely conserved throughout the cyanobacterial phylum. Its gene is fused to a protein-coding gene in some species, illustrating the evolutionary origin of sRNAs from an mRNA 3'-end. CONCLUSIONS: Our comprehensive set of genome-wide mapped TSSs, sRNAs and promoter activities will be valuable for projects requiring precise information about the control of transcription aimed at metabolic engineering and the elucidation of stress acclimation mechanisms in this promising strain.

17.
Nucleic Acids Res ; 46(19): 10082-10094, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30085248

RESUMO

As the key enzyme of bacterial nitrogen assimilation, glutamine synthetase (GS) is tightly regulated. In cyanobacteria, GS activity is controlled by the interaction with inactivating protein factors IF7 and IF17 encoded by the genes gifA and gifB, respectively. We show that a glutamine-binding aptamer within the gifB 5' UTR of Synechocystis sp. PCC 6803 is critical for the expression of IF17. Binding of glutamine induced structural re-arrangements in this RNA element leading to enhanced protein synthesis in vivo and characterizing it as a riboswitch. Mutagenesis showed the riboswitch mechanism to contribute at least as much to the control of gene expression as the promoter-mediated transcriptional regulation. We suggest this and a structurally related but distinct element, to be designated type 1 and type 2 glutamine riboswitches. Extended biocomputational searches revealed that glutamine riboswitches are exclusively but frequently found in cyanobacterial genomes, where they are primarily associated with gifB homologs. Hence, this RNA-based sensing mechanism is common in cyanobacteria and establishes a regulatory feedback loop that couples the IF17-mediated GS inactivation to the intracellular glutamine levels. Together with the previously described sRNA NsiR4, these results show that non-coding RNA is an indispensable component in the control of nitrogen assimilation in cyanobacteria.


Assuntos
Glutamato-Amônia Ligase/genética , Glutamina/genética , Riboswitch/genética , Cianobactérias/enzimologia , Cianobactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Glutamato-Amônia Ligase/biossíntese , Glutamato-Amônia Ligase/química , Regiões Promotoras Genéticas
18.
Environ Microbiol ; 20(8): 2757-2768, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29468839

RESUMO

In nature, microorganisms are exposed to multiple stress factors in parallel. Here, we investigated the response of the model cyanobacterium Synechocystis sp. PCC 6803 to simultaneous iron limitation and osmotic stresses. Iron is a major limiting factor for bacterial and phytoplankton growth in most environments. Thus, bacterial iron homeostasis is tightly regulated. In Synechocystis, it is mediated mainly by the transcriptional regulator FurA and the iron-stress activated RNA 1 (IsaR1). IsaR1 is an important riboregulator that affects the acclimation of the photosynthetic apparatus to iron starvation in multiple ways. Upon increases in salinity, Synechocystis responds by accumulating the compatible solute glucosylglycerol (GG). We show that IsaR1 overexpression causes a reduction in the de novo GG synthesis rate upon salt shock. We verified the direct interaction between IsaR1 and the 5'UTR of the ggpS mRNA, which in turn drastically reduced the de novo synthesis of the key enzyme for GG synthesis, glucosylglycerol phosphate synthase (GgpS). Thus, IsaR1 specifically interferes with the salt acclimation process in Synechocystis, in addition to its primary regulatory function. Moreover, the salt-stimulated GgpS production became reduced under parallel iron limitation in WT - an effect which is, however, attenuated in an isaR1 deletion strain. Hence, IsaR1 is involved in the integration of the responses to different environmental perturbations and slows the osmotic adaptation process in cells suffering from parallel iron starvation.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Glucosiltransferases/genética , Ferro/fisiologia , Pequeno RNA não Traduzido/metabolismo , Synechocystis/genética , Regiões 5' não Traduzidas , Proteínas de Bactérias/biossíntese , Glucosídeos/metabolismo , Glucosiltransferases/biossíntese , Pressão Osmótica , Fotossíntese , Estresse Salino/genética , Synechocystis/enzimologia , Synechocystis/metabolismo
19.
DNA Res ; 25(4): 343-352, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29444255

RESUMO

DNA methylation in bacteria is important for defense against foreign DNA, but is also involved in DNA repair, replication, chromosome partitioning, and regulatory processes. Thus, characterization of the underlying DNA methyltransferases in genetically tractable bacteria is of paramount importance. Here, we characterized the methylome and orphan methyltransferases in the model cyanobacterium Synechocystis sp. PCC 6803. Single molecule real-time (SMRT) sequencing revealed four DNA methylation recognition sequences in addition to the previously known motif m5CGATCG, which is recognized by M.Ssp6803I. For three of the new recognition sequences, we identified the responsible methyltransferases. M.Ssp6803II, encoded by the sll0729 gene, modifies GGm4CC, M.Ssp6803III, encoded by slr1803, represents the cyanobacterial dam-like methyltransferase modifying Gm6ATC, and M.Ssp6803V, encoded by slr6095 on plasmid pSYSX, transfers methyl groups to the bipartite motif GGm6AN7TTGG/CCAm6AN7TCC. The remaining methylation recognition sequence GAm6AGGC is probably recognized by methyltransferase M.Ssp6803IV encoded by slr6050. M.Ssp6803III and M.Ssp6803IV were essential for the viability of Synechocystis, while the strains lacking M.Ssp6803I and M.Ssp6803V showed growth similar to the wild type. In contrast, growth was strongly diminished of the Δsll0729 mutant lacking M.Ssp6803II. These data provide the basis for systematic studies on the molecular mechanisms impacted by these methyltransferases.


Assuntos
Metilação de DNA , Metilases de Modificação do DNA/metabolismo , Synechocystis/enzimologia , Proteínas de Bactérias/metabolismo , Análise de Sequência de DNA , Synechocystis/metabolismo
20.
Microbiology (Reading) ; 163(12): 1937-1945, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29091581

RESUMO

Ethylene is a gaseous signal sensed by plants and bacteria. Heterologous expression of the ethylene-forming enzyme (EFE) from Pseudomonas syringae in cyanobacteria leads to the production of ethylene under photoautotrophic conditions. The recent characterization of an ethylene-responsive signalling pathway affecting phototaxis in the cyanobacterium Synechocystis sp. PCC 6803 implied that biotechnologically relevant ethylene synthesis may induce regulatory processes that are not related to changes in metabolism. Here, we provide data that indicate that endogenously produced ethylene accelerates the movement of cells towards light. Microarray analysis demonstrates that ethylene mainly deactivates transcription from the csiR1/lsiR promoter, which is under the control of the two-component system consisting of the ethylene- and UV-A-sensing histidine kinase UirS and the DNA-binding response regulator UirR. Surprisingly, ethylene production triggers a very specific transcriptional response and only a few other smaller transcriptional changes are detected in the microarray analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...